Teachers
Alberto Testolin
Dipartimento di Psicologia Generale, Università degli Studi di Padova,
alberto.testolin@unipd.it
INFO-01/A
Aim
The aim of the course is to introduce the student to the leading frameworks to understand human cognition from a computational perspective. The discussed approaches are relevant both for understanding how the mind works and for the design of modern artificial intelligence systems. In particular, besides the most popular neural network models (e.g., deep learning), we will introduce the framework of structured probabilistic models, which are based on Bayesian rationality principles. A theoretical discussion will be complemented by case studies from the cognitive modeling literature.
Syllabus
- Introduction to the computational approach to understanding human cognition.
- Symbolic vs. emergentist models.
- Bayesian rationality and structured probabilistic models.
- Case studies from the cognitive modeling literature.
Course requirements
The student is expected to have basic knowledge of probability theory and machine learning.
Examination modality
None
Course material, enrollment and last-minute notifications
Made available by the teacher at this Moodle address
Schedule
08 April 2025
11 April 2025
Location
Tbd